Fortran/C on HCC

This quick start demonstrates how to implement a Fortran/C program on HCC supercomputers. The sample codes and submit scripts can be downloaded from `<serial_dir.zip>`.

Login to a HCC Cluster (Tusker or Sandhills)

Log in to a HCC cluster through PuTTY (For Windows Users) or Terminal (For Mac/Linux Users) and make a subdirectory called `serial_dir` under the `$WORK` directory.

```
$ cd $WORK
$ mkdir serial_dir
```

In the subdirectory `serial_dir`, save all the relevant Fortran/C codes. Here we include two demo programs, `demo_f_serial.f90` and `demo_c_serial.c`, that compute the sum from 1 to 20.

demo_f_serial.f90

Program demo_f_serial
implicit none
integer, parameter :: N = 20
real*8 w
integer i
common/sol/ x
real*8 x
real*8, dimension(N) :: y

do i = 1,N
 w = i*1d0
 call proc(w)
 y(i) = x
 write(6,*), i, x = ', i, y(i)
enddo
write(6,*), 'sum(y) =', sum(y)
Stop
End Program

Subroutine proc(w)
 real*8, intent(in) :: w
 common/sol/ x
 real*8 x

 x = w

Return
End Subroutine

Program demo_c_serial
#include <stdio.h>

int main() {
 double sum = 0;
 int i;
 double w;
 for (i = 1; i <= 20; i++) {
 w = i*1.0;
 printf("%d,", i);
 printf("%f,", w);
 printf("%f,", y(i));
 sum += w;
 }
 printf("sum(y) = %f\n", sum);
 return 0;
}
double proc(double w){
 double x;
 x = w;
 return x;
}

int main(int argc, char* argv[]){
 int N=20;
 double w;
 int i;
 double x;
 double y[N];
 double sum;
 for (i = 1; i <= N; i++){
 w = i*1e0;
 x = proc(w);
 y[i-1] = x;
 printf("i,x= %d %lf\n", i, y[i-1]) ;
 }

 sum = 0e0;
 for (i = 1; i<= N; i++){
 sum = sum + y[i-1];
 }

 printf("sum(y)= %lf\n", sum);

 return 0;
}
Creating a Submit Script

Create a submit script to request one core (default) and 1-min run time on the supercomputer. The name of the main program enters at the last line.

submit_f.serial

```
#!/bin/sh
#SBATCH --mem-per-cpu=1024
#SBATCH --time=00:01:00
#SBATCH --job-name=Fortran
#SBATCH --error=Fortran.%J.err
#SBATCH --output=Fortran.%J.out

module load compiler/gcc/4.9
./demo_f_serial.x
```

submit_c.serial

```
#!/bin/sh
#SBATCH --mem-per-cpu=1024
#SBATCH --time=00:01:00
#SBATCH --job-name=C
#SBATCH --error=C.%J.err
#SBATCH --output=C.%J.out

module load compiler/gcc/4.9
./demo_c_serial.x
```

Submit the Job

The job can be submitted through the command `sbatch`. The job status can be monitored by entering `squeue` with the `-u` option.

```
$ sbatch submit_f.serial
$ sbatch submit_c.serial
$ squeue -u <username>
```

Sample Output

The sum from 1 to 20 is computed and printed to the `.out` file (see below).
<table>
<thead>
<tr>
<th>i, x =</th>
<th>1.0000000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>i, x =</td>
<td>2.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>3.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>4.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>5.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>6.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>7.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>8.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>9.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>10.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>11.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>12.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>13.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>14.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>15.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>16.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>17.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>18.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>19.0000000000000000</td>
</tr>
<tr>
<td>i, x =</td>
<td>20.0000000000000000</td>
</tr>
</tbody>
</table>

sum(y) = 210.0000000000000000